Изготовление трехмерных фотонных кристаллов с помощью многослойной фотолитографии

В последние годы наблюдается растущий интерес к исследованиям в области фотонных кристаллов, представляющих собой искусственно созданные среды, которые могут быть использованы для управления распространением электромагнитных волн. Как правило, такие кристаллы состоят из структур, обладающих периодичностью, сравнимой с длиной волны, для модуляции которой они предназначены. Если материал и периодическая структура подобраны правильно, фотонные кристаллы могут применяться во многих областях благодаря их уникальным свойствам.

Юлия Борисова

lum@eurointech.ru

трого говоря, фотонные кристаллы должны обладать периодичностью в трех измерениях. Одним из методов изготовления трехмерных фотонных кристаллов является трехмерная фотолитография, когда, например, с помощью рентгеновского луча толстая пленка фоторезиста может быть «просверлена» под углом тремя экспозициями для формирования структуры яблоновита [1]. Также ранее уже было показано, что при правильном расположении нескольких лазерных лучей возможно создание трехмерных периодических структур [2], а произвольные трехмерные полимерные структуры могут быть получены путем многофотонной полимеризации [3].

Однако, несмотря на достигнутый значительный прогресс в развитии этих методов, все они имеют

существенные недостатки. Так, рентгеновская литография требует дорогостоящего источника излучения, а лазерной интерферометрической литографии не хватает гибкости.

Группа ученых из Делавэрского университета разработала процесс многослойной литографии для изготовления фотонных кристаллов.

Технологический процесс

Для работы использовалось несколько планарных шаблонов негативного резиста для послойного создания желаемой 3D-структуры. На рис. 1 показан процесс литографии. Для каждого слоя сначала методом центрифугирования наносится резист, затем он подсушивается, после чего проводится 3D-экспонирование и задубливание резиста для формирования скрытого рисунка путем последующего соединения полученных слоев.

Один и тот же цикл повторяется несколько раз так, чтобы плоскостные узоры в различных слоях в итоге сформировали и образовали скрытую трехмерную структуру. Эта скрытая 3D-структура проявляется при окончательной обработке.

В ходе процесса крайне важно контролировать два параметра: толщину слоя резиста и глубину проникновения излучения. Оба параметра фактически связаны с двумя фундаментальными проблемами, возникающими в процессе многослойной фотолитографии.

Трехмерное экспонирование

В описанном выше процессе изготовления очень важно ограничить экспонирование в вертикальном направлении. При проведении процессов обычной планарной литографии рисунок с маски переносится на слой резиста в виде двумерных элементов. При этом нужно получить вертикальные боковые стенки с высоким аспектным соотношением. Вот почему прозрачность резиста необходима для равномерного экспонирования. Однако в предлагаемом процессе трехмерного экспонирования прозрачность резиста, напротив, нежелательна, поскольку приводит к повторному экспонированию его нижних слоев, на которые ранее был нанесен рисунок. Для того чтобы достичь поверхностно-ограниченного экспонирования, ученые использовали экспонирование при меньшей длине волны с целью усиления поглощения излучения резистом и, как следствие, снижения глубины проникновения излучения.

Сначала методом центрифугирования наносится пленка резиста толщиной 4 мкм с помощью негативного резиста NR7-1500 і-линии. Затем проводится процесс экспонирования с различными дозами облучения резиста, с применением источников глубокого УФизлучения 254 и 220 нм и закрепление с дополнительным экспонированием с использованием источника 365 нм.

На рис. 2а показан снимок, полученный при экспонировании на длине волны 254 нм, а на рис. 26 — при экспонировании на длине волны 220 нм.

Полученные результаты наглядно демонстрируют возможность ограничения воздействия на поверхность резиста, когда источник излучения не совпадает с резистом. Более того, изменение дозы облучения для данной длины волны источника света позволяет контролировать глубину облучения.

Многократное нанесение резиста

Следующий шаг в создании трехмерных структур — нанесение нового слоя резиста с контролируемой толщиной. Для изготовления фотонного кристалла новый резист наносится на верхнюю часть пленки уже экспонированного слоя резиста.

Формирование структуры

По завершении описанного процесса литографии в фоторезисте образуются трехмерные структуры. После удаления резиста можно получить инвертированную 3D-структуру с желаемым индексным контрастом. В данной работе ученые использовали прекурсор, состоящий из ацетата циркония в соотношении 1:1 и метанола. Также применялся нагрев до +450 °C со скоростью 2 °C/мин с удержанием температуры в течение 1 ч.

Рис. 2. а) Микрофотография структур, сформированных с использованием излучения при длине волны 254 нм. Фотография сделана с помощью сканирующего электронного микроскопа (СЭМ). Доза облучения увеличивается от 0,9 мДж/см² (вверху слева) до 18,45 мДж/см² (внизу справа) с шагом 0,45 мДж/см²; толщина увеличена соответственно с 329 нм до 1860 нм; б) СЭМ микрофотография кантилеверных структур, сформированных с использованием длины волны 220 нм. Доза облучения увеличивается от 0,33 мДж/см² (вверху слева) до 6,6 мДж/см² (внизу справа) с шагом 0,33 мДж/см²; толщина увеличивается соответственно с 287 до 1430 нм

Рис. 3. СЭМ-микрофотография многослойных структур, изготовленных с использованием предложенного метода 3D-литографии: а) шестислойная структура; б) восьмислойная структура

Результаты

В работе использовался негативный резист NR7-1500PY. Для неэкспонированного резиста его коэффициент поглощения составляет 0,494 мкм⁻¹ и 2,442 мкм⁻¹ при 365 и 254 нм соответственно. Все слои резиста наносились методом центрифугирования при 3000 об/мин и ускорении 500 об/мин/с с переменным потоком воздуха.

Затем резист запекался при +135 °C в течение 1 мин и экспонировался с помощью установки совмещения и экспонирования АВМ/6/350/NUV/DCCD/SA компании ABM с дозой 6 мДж/см² с использованием источника глубокого УФ-излучения 254 нм. После чего проводилось запекание резиста при температуре +120 °C в течение 1 мин с использованием горячей плиты.

Далее резист проявлялся с помощью проявителя RD6 для выявления скрытых структур. На рис. 3 показаны изображения 3D-структур, изготовленных с помощью предложенного метода.

И наконец, проводилось снятие резиста с помощью золь-гель процесса. На рис. 4 по-

Рис. 4. СЭМ-микрофотографии структур из диоксида циркония: а) четырехслойная структура размером 100×100 мкм; б) четырехслойная структура с произвольными дефектами в виде букв U, D, встроенными во второй слой сверху. в) вид восьмислойной структуры сбоку

казаны микрофотографии инвертированных структур.

Вывод

Метод трехмерной многослойной литографии может применяться для изготовления трехмерных фотонных кристаллов. Модифицированный по сравнению с планарной литографией, этот подход позволяет создавать произвольные 3D-структуры, а также предназначается для серийных процессов. Для получения необходимых трехмерных структур крайне важно использовать правильное оборудование, в частности, установку совмещения и экспонирования с высокой точностью совмещения и высокой однородностью источника УФ-излучения.

Литература

- 1. Cuisin C., Chelnokov A., Lourtioz J.-M., Decanini D., Chen Y. Submicrometer Resolution Yablonovite Templates Fabricated By X-ray Lithography // Applied Physics Letters. 2000. Vol. 77. Iss. 6.
- 2. Campbell M., Sharp D. N., Harrison M. T., Denning R. G., Turberfield A. J. Fabrication of Photonic Crystals for the Visible Spectrum By Holographic Lithography // Nature. 2000. No. 404.
- 3. Cumpston B. H., Ananthavel S. P., Barlow S., Dyer D. L., Ehrlich J. E., Erskine L. L., Heikal A. A., Kuebler S. M., Lee I. Y. S., McCord-Maughon D., Qin J. Q., Rockel H., Rumi M., Wu X. L., Marder S. R., Perry J. W. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication // Nature. 1999. No. 398.